首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3465篇
  免费   413篇
  国内免费   244篇
  2023年   104篇
  2022年   99篇
  2021年   145篇
  2020年   164篇
  2019年   162篇
  2018年   139篇
  2017年   125篇
  2016年   121篇
  2015年   133篇
  2014年   163篇
  2013年   255篇
  2012年   129篇
  2011年   144篇
  2010年   104篇
  2009年   158篇
  2008年   154篇
  2007年   158篇
  2006年   172篇
  2005年   204篇
  2004年   192篇
  2003年   157篇
  2002年   129篇
  2001年   74篇
  2000年   67篇
  1999年   58篇
  1998年   43篇
  1997年   37篇
  1996年   39篇
  1995年   35篇
  1994年   34篇
  1993年   32篇
  1992年   24篇
  1991年   22篇
  1990年   31篇
  1989年   20篇
  1988年   17篇
  1987年   24篇
  1986年   14篇
  1985年   35篇
  1984年   22篇
  1983年   19篇
  1982年   21篇
  1981年   22篇
  1980年   17篇
  1979年   17篇
  1978年   29篇
  1977年   18篇
  1976年   13篇
  1975年   12篇
  1974年   5篇
排序方式: 共有4122条查询结果,搜索用时 15 毫秒
81.
The accurate identification of protein structure class solely using extracted information from protein sequence is a complicated task in the current computational biology. Prediction of protein structural class for low-similarity sequences remains a challenging problem. In this study, the new computational method has been developed to predict protein structural class by fusing the sequence information and evolution information to represent a protein sample. To evaluate the performance of the proposed method, jackknife cross-validation tests are performed on two widely used benchmark data-sets, 1189 and 25PDB with sequence similarity lower than 40 and 25%, respectively. Comparison of our results with other methods shows that the proposed method by us is very promising and may provide a cost-effective alternative to predict protein structural class in particular for low-similarity data-sets.  相似文献   
82.
Abstract

In this paper, we propose a nongraphical representation for protein secondary structures. By counting the frequency of occurrence of all possible four-tuples (i.e., four-letter words) of a protein secondary structure sequence, we construct a set of 3 × 3 matrices for the corresponding protein secondary structure sequence. Furthermore, the leading eigenvalues of these matrices are computed and considered as invariants for the protein secondary structure sequences. To illustrate the utility of our approach, we apply it to a set of real data to distinguish protein structural classes. The result indicates that it can be used to complement the classification of protein secondary structures.  相似文献   
83.
The streptavidin/biotin interaction has been widely used as a useful tool in research fields. For application to a pre-targeting system, we previously developed a streptavidin mutant that binds to an iminobiotin analog while abolishing affinity for natural biocytin. Here, we design a bivalent iminobiotin analog that shows 1000-fold higher affinity than before, and determine its crystal structure complexed with the mutant protein.  相似文献   
84.
The kinetochore is the macromolecular protein complex that mediates chromosome segregation. The Dsn1 component is crucial for kinetochore assembly and is phosphorylated by the Aurora B kinase. We found that Aurora B phosphorylation of Dsn1 promotes the interaction between outer and inner kinetochore proteins in budding yeast.  相似文献   
85.
A paradigm regarding rhamnogalacturonans II (RGII) is their strictly conserved structure within a given plant. We developed and employed a fast structural characterization method based on chromatography and mass spectrometry, allowing analysis of RGII side chains from microgram amounts of cell wall. We found that RGII structures are much more diverse than so far described. In chain A of wild‐type plants, up to 45% of the l –fucose is substituted by l –galactose, a state that is seemingly uncorrelated with RGII dimerization capacity. This led us to completely reinvestigate RGII structures of the Arabidopsis thaliana fucose‐deficient mutant mur1, which provided insights into RGII chain A biosynthesis, and suggested that chain A truncation, rather than l –fucose to l –galactose substitution, is responsible for the mur1 dwarf phenotype. Mass spectrometry data for chain A coupled with NMR analysis revealed a high degree of methyl esterification of its glucuronic acid, providing a plausible explanation for the puzzling RGII antibody recognition. The β–galacturonic acid of chain A exhibits up to two methyl etherifications in an organ‐specific manner. Combined with variation in the length of side chain B, this gives rise to a family of RGII structures instead of the unique structure described up to now. These findings pave the way for studies on the physiological roles of modulation of RGII composition.  相似文献   
86.
The acquisition of massive but localized chromosome translocations, a phenomenon termed chromothripsis, has received widespread attention since its discovery over a year ago. Until recently, chromothripsis was believed to originate from a single catastrophic event, but the molecular mechanisms leading to this event are yet to be uncovered. Because a thorough interpretation of the data are missing, the phenomenon itself has wrongly acquired the status of a mechanism used to justify many kinds of complex rearrangements. Although the assumption that all translocations in chromothripsis originate from a single event has met with criticism, satisfactory explanations for the intense but localized nature of this phenomenon are still missing. Here, we show why the data used to describe massive catastrophic rearrangements are incompatible with a model comprising a single event only and propose a molecular mechanism in which a combination of known cellular pathways accounts for chromothripsis. Instead of a single traumatic event, the protection of undamaged chromosomes by telomeres can limit repetitive breakage-fusion-bridge events to a single chromosome arm. Ultimately, common properties of chromosomal instability, such as aneuploidy and centromere fission, might establish the complex genetic pattern observed in this genomic state.  相似文献   
87.
Advancements in somatic cell gene targeting have been slow due to the finite lifespan of somatic cells and the overall inefficiency of homologous recombination. The rate of homologous recombination is determined by mechanisms of DNA repair, and by the balance between homologous recombination (HR) and non-homologous end joining (NHEJ). A plasmid-to-plasmid, extra chromosomal recombination system was used to study the effects of the manipulation of molecules involved in NHEJ (Mre11, Ku70/80, and p53) on HR/NHEJ ratios. In addition, the effect of telomerase expression, cell synchrony, and DNA nuclear delivery was examined. While a mutant Mre11 and an anti-Ku aptamer did not significantly affect the rate of NHEJ or HR, transient expression of a p53 mutant increased overall HR/NHEJ by 2.5 fold. However, expression of the mutant p53 resulted in increased aneuploidy of the cultured cells. Additionally, we found no relationship between telomerase expression and changes in HR/NHEJ. In contrast, cell synchrony by thymidine incorporation did not induce chromosomal abnormalities, and increased the ratio of HR/NHEJ 5-fold by reducing the overall rate of NHEJ. Overall our results show that attempts at reducing NHEJ by use of Mre11 or anti-Ku aptamers were unsuccessful. Cell synchrony via thymidine incorporation, however, does increase the ratio of HR/NHEJ and this indicates that this approach may be of use to facilitate targeting in somatic cells by reducing the numbers of colonies that need to be analyzed before a HR is identified.  相似文献   
88.
Individual dispersal,landscape connectivity and ecological networks   总被引:1,自引:0,他引:1  
Connectivity is classically considered an emergent property of landscapes encapsulating individuals' flows across space. However, its operational use requires a precise understanding of why and how organisms disperse. Such movements, and hence landscape connectivity, will obviously vary according to both organism properties and landscape features. We review whether landscape connectivity estimates could gain in both precision and generality by incorporating three fundamental outcomes of dispersal theory. Firstly, dispersal is a multi‐causal process; its restriction to an ‘escape reaction’ to environmental unsuitability is an oversimplification, as dispersing individuals can leave excellent quality habitat patches or stay in poor‐quality habitats according to the relative costs and benefits of dispersal and philopatry. Secondly, species, populations and individuals do not always react similarly to those cues that trigger dispersal, which sometimes results in contrasting dispersal strategies. Finally, dispersal is a major component of fitness and is thus under strong selective pressures, which could generate rapid adaptations of dispersal strategies. Such evolutionary responses will entail spatiotemporal variation in landscape connectivity. We thus strongly recommend the use of genetic tools to: (i) assess gene flow intensity and direction among populations in a given landscape; and (ii) accurately estimate landscape features impacting gene flow, and hence landscape connectivity. Such approaches will provide the basic data for planning corridors or stepping stones aiming at (re)connecting local populations of a given species in a given landscape. This strategy is clearly species‐ and landscape‐specific. But we suggest that the ecological network in a given landscape could be designed by stacking up such linkages designed for several species living in different ecosystems. This procedure relies on the use of umbrella species that are representative of other species living in the same ecosystem.  相似文献   
89.
Cytogenetic studies in birds are still scarce compared to other vertebrates. Woodcreepers (Dendrocolaptidae) are part of a highly specialized group within the Suboscines of the New World. They are forest birds exclusive to the Neotropical region and similar to woodpeckers, at a comparable evolutionary stage. This paper describes for the first time the karyotypes of the Olivaceous and the Narrow-billed Woodcreeper using conventional staining with Giemsa and silver nitrate staining of the nucleolar organizer regions (Ag-NORs). Metaphases were obtained by fibular bone marrow culture. The chromosome number of the Olivaceous Woodcreeper was 2n = 82 and of the Narrow-billed Woodcreeper, 2n = 82. Ag-NORs in the largest macrochromosome pair and evidence of a chromosome inversion are described herein for the first time for this group.  相似文献   
90.
《Current biology : CB》2019,29(12):1999-2008.e4
  1. Download : Download high-res image (588KB)
  2. Download : Download full-size image
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号